Первые телеграфные аппараты и станции на железнодорожном транспорте
(По материалам книги «История электрической связи железнодорожного транспорта», Н.М.Семенюта и И.А.Здоровцов, издательский дом Транспортная книга, 2008 г.)
В истории телеграфа в период с 1753-1839 гг. насчитывалось более 47 различных систем передачи. Большинство из них так и остались на бумаге, но были и такие, которые настойчиво пробивали себе дорогу к практическому применению… .
Основу первых телеграфов составляли приборы передачи и приема сообщений. В качестве передатчика, как правило, использовались манипуляторы, замыкающие и размыкающие электрические цепи. На первых телеграфах наибольшее применение получили специальные клавиатуры (телеграф Шиллинга, Якоби и др.), а затем простейшие телеграфные ключи (телеграф Морзе, Сименс и Гальске и др.)
Более сложными в электрических телеграфах обычно являлись приемные приборы, их устройство определялось принципом передачи сообщений. Так, в электролитическом телеграфе Земмеринга приемником был сосуд с водой (электролитом) и электродами. В первом электрическом телеграфе Шиллинга прием сообщения фиксировался по отклонению магнитной стрелки мультипликатора с диском и успокоителем колебаний. Во всех последующих телеграфах прием сообщений производился исключительно приборами, устройство которых основано на временном намагничивании мягкого железа (электромагнита). Такой прибор служил для приема телеграфных знаков, и его действие было основано на воздействии гальванического тока на мягкое железо.
Все основные узлы телеграфных аппаратов того далекого времени: двигатели, регуляторы, лентопротяжные механизмы были построены на элементах с использованием механических зависимостей и передач.
Пишущий аппарат Морзе. Самуэль Финли Морзе (1791-1872) - один из наиболее часто упоминаемых изобретателей телеграфного аппарата, названного его именем. На самом же деле он был только одним из изобретателей, и ему почти всю жизнь пришлось оспаривать свое изобретение. Такое положение возникло в связи с тем, что он неоднократно посещал Европу и был знаком со многими разработками других изобретателей того времени. Американцы все же создали Морзе неувядаемую славу изобретателя и еще при жизни. в 1871 г.. в Нью-Йорке в его присутствии ему был открыт памятник.
Памятник Самуэлю Финли Морзе
В результате многолетних экспериментов 4 сентября 1837 г. Морзе в Нью-Йорке при помощи своего аппарата и разработанной им условной азбуки впервые передал слова: «Удачный опыт над телеграфом сентябрь 4 1837».
В качестве передатчика электрических сигналов (станция А) в телеграфном аппарате Морзе применяется ключ (манипулятор) с линейной батареей. Приемником сигналов (станция Б) являлся электромагнит. При замыкании ключа на станции А ток по линии связи поступал в приемный электромагнит и возвращался обратно к батарее по земле. Якорь, вращающийся на оси, притягивался к сердечнику электромагнита. Одновременно с притяжением якоря вверх отходило его плечо с пишущим приспособлением - колесиком, смоченным черной краской. Колесико, будучи прижатым к движущейся бумажной ленте, оставляло на ней след в виде черты. При кратковременном нажатии ключа передатчика колесико делало короткую черту (точку), при продолжительном - длинную (тире). При нажатии ключа в различных комбинациях по продолжительности на ленте станции Б получались знаки - точки и тире в тех же комбинациях. В азбуке Морзе буквы алфавита, цифры и знаки препинания обозначались комбинациями, состоящими из токовых посылок различной продолжительности, которые и оставляли след в виде точек и тире на бумажной ленте приемника.
Принцип работы пишущего телеграфного аппарата Морзе
Данная схема аппарата, позволявшего телеграфировать только в одном направлении и получившая название симплекс, позволяла работать от станции А к станции Б с работоспособностью 500 слов в час. На практике также применялись схемы, дающие возможность поочередно телеграфировать сперва от станции А к станции Б, а затем наоборот - от Б к А (полудуплекс) или одновременно телеграфировать в обоих направлениях (дуплекс). При дуплексном телеграфировании пропускная способность возрастала примерно в два раза.
Основным преимуществом телеграфной связи на аппаратах Морзе была возможность получать контроль передачи собственного сообщения по телеграфной ленте, которая являлась документом по управлению движением поездов, а также возможность по гальваноскопу (миллиамперметру) контролировать состояние цепи связи, т. е. обрыв или короткое замыкание на линии. Таким образом было положено начало диагностики состояния цепей связи.
Телеграфный аппарат Морзе состоял из двух главных частей: электромагнита и часового механизма с системой колес, приводимых в движение гирей или пружиной. Часовой механизм бьл предназначен для продвижения телеграфной ленты.
Общий вид пишущего телеграфного аппарата Морзе (1844)
Причиной практической непригодности многих электромагнитных телеграфных аппаратов была сложность их устройства, громоздкость и низкая надежность. По этим показателям телеграфный аппарат Морзе значительно превзошел многие другие конструкции. Кроме того, аппарат позволял организовывать связь на далекие расстояния. Простота - замечательная особенность аппарата Морзе, которая обеспечила ему небывалый успех и долгие годы применения на железных дорогах во всех странах мира.
Буквопечатающий аппарат Юза. Буквопечатающий телеграфный аппарат профессора Д. Юза (1831-1900) впервые был установлен на магистрали Москва - С.-Петербург в 1865 г. Его особенностью являлась передача не точек и тире, например как в аппаратах Морзе, а передача букв, цифр и других знаков, что значительно сокращало время обработки принятых телеграфных сообщений.
Общий вид телеграфного аппарата Юза с гиревым приводом
Для передачи сообщений использовалась клавиатура, состоящая из 28 белых и черных клавишей. Аппарат имел гиревой привод с центробежным регулятором скорости продвижения телеграфной ленты. Прием посылок тока осуществлялся поляризованным электромагнитом реле. Вращающееся типовое колесо с выгравированными по окружности знаками (типами) алфавита, цифр и др., отпечатывало их на бумажной ленте.
Принцип работы буквопечатающего телеграфного аппарата Юза.
Принцип работы буквопечатающего аппарата Юза основывался на синхронном и синфазном вращении типовых колес передающего и приемного аппаратов. При нажатии, например, на клавишу К на передающем аппарате станции А, в линию через контакт клавиши поступает посылка тока. Когда типовое колесо приемного аппарата будет находиться над буквой К, сработает электромагнит М, и на телеграфной ленте отпечатает принятый знак.
Работоспособность аппарата Юза при 120 оборотах типового колеса в минуту составляла 10800 знаков в час. Дальность передачи находилась в пределах 600-800 км.
На железных дорогах телеграфный буквопечатающий синхронный аппарат не получил широкого применения, хотя и был предметом изучения в лаборатории телеграфа Петербургского института инженеров путей сообщения.
Быстродействующий аппарат Уитстона. Телеграфный аппарат Уитстона относился к быстродействующим аппаратам (2000 слов в час) и применялся для передачи на дальние расстояния (2000-9000 км) больших объемов корреспонденции между крупными железнодорожными подразделениями - управлениями железных дорог и др. Особенность этого аппарата состояла в том, что сообщение, подлежащее передаче, предварительно переносилось в азбуке Морзе на промасленную узкую телеграфную ленту, а затем с уже перфорированной ленты передавалось на другую станцию. На ленте точке азбуки Морзе соответствовали два круглых отверстия по перпендикуляру к средней линии отверстий, тире - два отверстия со сдвигом относительно друг друга. Средние круглые отверстия предназначались для протягивания ленты в трансмиттере (передающее устройство) посредством зубчатого колеса.
Аппарат Уитстона состоял из следующих приборов:
- перфоратора для предварительного набора на телеграфную ленту телеграмм, предназначенных для передачи ;
- передатчика (или трансмиттера) для автоматической посылки сигналов с заранее заготовленной перфорированной ленты;
- приемника или ресивера для записи на ленте принятых сигналов в азбуке Морзе;
- телеграфного ключа для ручной передачи знаков сообщений
Перфоратор Уитсона для узкой бумажной телеграфной ленты
Клавиатура перфоратора имела три клавиши для пробивки отверстий в соответствии с азбукой Морзе Для пробивки круглых отверстий в телеграфной ленте требовалась определенная сила и производилась она специальными массивными «колотушками» при ударе по соответствующим кнопкам перфоратора. Заготовку перфорированной телеграфной ленты можно было производить заранее на нескольких перфораторах.
После подготовки перфорированная телеграфная лента вставлялась в телеграфный аппарат и с большой скоростью пропускалась через трансмиттер, который автоматически посылал в линию при передаче точки ток положительный полярности и тотчас же отрицательной для разряда линии, а при передачи тире - положительный и немного позже отрицательный ток Такой способ позволял значительно повысить скорость передачи посылок тока. Протягивание телеграфной ленты в передатчике и приемнике производились с помощью гирь или часовых механизмов с пружинами.
Быстродействующий аппарат Сименса В истории связи известно несколько вариантов пишущих телеграфных аппаратов Сименса и Гальскс, которые «отличались особенной прочностью и отчетливостью действия». Их основное отличие от аппаратов Морзе заключалось в более сложном устройстве электромагнита.
Телеграфный аппарат Сименса: а) передатчик с перфоратором; б) приемник
На железных дорогах в основном применялись аппараты Сименса, обладавшие весьма большим быстродействием (5000 слов в час), для телеграфного обмена министерства с крупными железнодорожными узлами. В аппаратах Сименса, как и в аппаратах Уитстона, сообщения предварительно набирали на клавиатурном перфораторе, подобном перфоратору телеграфного аппарата Уитстона. Для передачи букв и цифр в передатчике использовались комбинации из пяти посылок тока положительных и отрицательных полярностей. На ленте для каждой буквы пробивались пять отверстий в различных комбинациях. Принятое ресивером (приемником) сообщение записывалось на бумажную ленту аппарата (ондулятора) зигзагообразными линиями в соответствии с кодом Морзе.
Многократный аппарат Бодо Бодо Жан (1845-1903) - французский изобретатель, создавший практически пригодную систему многократного последовательного телеграфирования, которая многие годы применялась на железных дорогах.
Жан Бодо
Аппарат Бодо состоял из трех основных частей: контактного распределителя; клавиатуры; печатающего устройства. В аппаратах Бодо каждый знак передавался пятью посылками токов положительной и отрицательной полярностью в различных комбинациях. Для посылки пяти сигналов предназначалась клавиатура или манипулятор, имевшая пять клавишей: три - для правой руки и две - для левой
Клавиатура телефонного аппарата Бодо
Основным элементом печатающего устройства было типовое колесо с прижатым к нему красящим колесом. Печатание буквы (цифры) на телеграфной ленте осуществлялось при прижатии телеграфной ленты к типовому колесу.
Приемник и печатающее устройство телеграфного аппарата Бодо
Аппараты Бодо были 2-, 4-, 6-, и 8-кратные, имевшие соответствующее число (крата) комплектов для приема; на железных дорогах применялись в основном 2- и 4-кратные аппараты. Работоспособность 2-кратных аппаратов составляла 2700, 4-кратных - 5400 слов в час. Оборудование наиболее распространенного 4-кратного аппарата Бодо размещалось на пяти столах, на которых были установлены распределитель, четыре комплекта (крата), состоящих из приемника и клавиатуры.
Общий вид быстродействующего четырехкратного телеграфного аппарата Бодо
Впервые система Бодо была введена в эксплуатацию в 1877 г. на линии Париж -Бордо, а затем в других странах, в том числе в 1906 г. в России, где он до 1950 г. был основным видом телеграфных аппаратов. Телеграфные аппараты Бодо обеспечивали устойчивую работу на линиях 700-1000 км и на железнодорожном транспорте применялись для связи МПС с управлениями дорог и последних с крупными железнодорожными узлами.
Устройство телеграфных станций Самыми простыми телеграфными станциями в начале их развития были станции, в которых телеграфные линии оканчивались включенными в них телеграфными аппаратами. Такие оконечные станции устраивались относительно редко. Большее распространение получили промежуточные телеграфные станции, позволяющие производить коммутацию линий связи и аппаратов. Слово «коммутация» происходит от латинского commutatus – изменение. Процессы коммутации в электрической связи реализуются в специальном устройстве - коммутаторе, в котором производятся переключения линий связи и изменения направлений передачи телеграфных депеш. На промежуточных телеграфных станциях для ручной коммутации вначале использовались простейший круглый, а затем квадратный коммутаторы с тремя отверстиями. Коммутаторы состояли из трех медных пластинок, прикрепленных к деревянной доске так, чтобы они не прикасались друг к другу; но их можно соединить вместе, вставляя медную втулку (штепсель) и производить подключение. одного линейного провода на промежуточных станциях к двум аппаратам.
С увеличением числа линейных проводов и телеграфных аппаратов начали использовать более сложные коммутаторы, («швейцарские»), которые состояли из нескольких взаимно перпендикулярных медных пластин с круглыми отверстиями. Для соединения горизонтальной и вертикальной полос и линейного провода с необходимым телеграфным аппаратом (1, 2, 3) в отверстие вставлялась медная втулка. Число пластинок в каждом ряду зависело от числа проводов, сходящихся на станции, для которой был предназначен коммутатор.
Швейцарский телеграфный коммутатор
Принцип работы такого коммутатора широко применялся и в автоматических системах коммутации. В последующие годы возможности подобных коммутаторов были расширены, с их помощью стало возможным коммутировать не только телеграфные аппараты и линейные провода, но и батареи питания, т. е. они стали универсальными и получили название линейно-батарейных коммутаторов. Из них наибольшее распространение получил более совершенный швейцарский коммутатор координатного типа, который состоял из поперечных и продольных латунных пластин (ламелей), расположенных под прямым углом. В местах пересечения пластин они имели цилиндрические отверстия для вставки медного штепселя. Если в отверстия вставить штепсель, то верхняя пластина электрически соединяется с нижней пластиной и происходит коммутация цепей. Емкость таких коммутаторов была небольшой (10-12 линий), поэтому в дальнейшем они были заменены на отечественные линейно-батарейные коммутаторы (ЛБК) емкостью 60-100 линий.
Широко используемая в практике промежуточной телеграфной станции - трансляция (от лат. translation - передача). С внедрением телеграфной связи одной из основных проблем стало увеличение расстояния непосредственной телеграфной передачи, т. е. прямой связи двух оконечных аппаратов. Общий вид телеграфной трансляции БСТО (Большого Северного Телеграфного общества), широко используемой на железных дорогах России:
Общий вид простой телеграфной трансляции типа БСТО
Пределом непосредственной передачи телеграфных аппаратов того времени было около 300 верст. Следовательно, для передачи депеш на большие расстояния, необходимо было передать ее сначала на промежуточную станцию, расположенную на расстоянии не более 300 верст, там принять ее, написать и с помощью другого аппарата передать вновь на 300 верст и т. д. На такую ручную передачу депеш затрачивалось много времени. Основными элементами трансляции являлись поляризованные телеграфные реле Присса. Применение телеграфных трансляций позволило значительно увеличить расстояния при прямой передаче депеш.
Процесс становления и развития в Российском государстве промышленности по передаче сообщений с использованием электрических сигналов неразрывно связан с началом строительства железных дорог. Исторически эпоху становления и развития электросвязи на российских железных дорогах условно можно разделить на три этапа. Первый этап охватывает период с 1843 г. по 1958 г. (115 лет) и характеризуется применением аналоговых сетей воздушных линий связи (ВЛС) различных конструкций. Второй этап определяется периодом с 1959 г. по 1994 г. (35 лет) и связан с заменой ВЛС на симметричные кабельные линии связи (КЛС) с медными жилами, уплотняемые аналоговыми системами передачи с частотным разделением каналов (АСП с ЧРК) типа К-24, К60 и др. Третий этап охватывает период с 1995 г. по настоящее время и связан с полной заменой аналоговых систем и сетей связи на цифровые с использованием волоконно-оптического кабеля, радиорелейных и спутниковых линий, оборудованных цифровыми системами передачи с временным разделением каналов (ЦСП и ВРК)
Свой сложный эволюционный путь техника передачи сообщений начала с примитивной телеграфной связи (1843 г.) Перед началом проектирования и строительства С.-Петербурго-Московской железной дороги был рассмотрен зарубежный опыт, изучение которого было поручено Департаменту железных дорог. Все работы по сооружению С.-Петербурго-Московской железной дороги возглавил Главноуправляющий путями сообщений и публичными зданиями генерал Петр Андреевич Клейнмихель.
П.А. Клейнмихель (1793-1869)
Особо обращалось внимание на «принятые и употребляемые системы и способы для сигналов, подаваемых с дороги и с вагонов в разных случаях при движении по железной дороге». На Фрейбургской железной дороге действовал Зеркальный телеграф, изобретенный Трентлером. Представитель департамента докладывал Клейнмихелю, что «зеркальный телеграф имел большую сложность как самих сигналов, так и способа их обслуживания. ..таких телеграфов потребно на всякую милю не менее 10..». Таким образом для С.-Петербурго-Московской железной дороги потребовалось бы не менее 900 штук таких телеграфов. Французским инженером Гереном был разработан Акустический телеграф. Его основу составлял телефон-прибор, служащий для сжатия воздуха, который употреблялся для передачи приказаний и сигналов от одной станции до другой через путевую стражу. Звуки телефона издавались на пистонном рожке и были слышны на 8 и более верст. Аппарат позволял передавать до 10 различных сигналов, вполне отличимых друг от друга. Сигналисты, обслуживающие его должны были обладать музыкальным слухом.
Передатчик акустического телеграфа (1843 г.)
Техническая комиссия отнеслась холодно к телефону Герена. Однако отношение Клейнмихеля было теплым, и он доложил об аппарате царю Николаю I.
Также была рассмотрена Колокольная сигнализация Бейля. Колокола приводились в действие проволокой, проведенной у подошвы рельса (начало механической централизации!). Летом действие было хорошее, но зимой проволока примерзала к земле. Сигнальные трубы. Этот вид сигнализации применялся для передачи голосовых сообщений при переговорах. На Мюнхен-Аугсбургской ж.д. при безветрии сигнал был слышен на расстоянии 1000-1200 м. Но, как и во всех видах сигнализации и связи, безопасность (сохранность труб) зависела от бдительности стражи.
В 1850 г. перед самым началом составления проекта электромагнитного телеграфа вдоль С.-Петербурго-Московской железной дороги поступило донесение об Электрохимическом телеграфе американского изобретателя Бена. В донесении отмечалось, что «..Буквы в телеграфе Бена, как и в телеграфе Морзе, передаются знаками, состоящими из черточек и точек, различным образом соединенных. В телеграфах Морзе эти знаки отмечаются на бумаге стальною иглою и потому бывают не довольно явственны; в телеграфе же г.Бена они обозначаются на бумаге синим цветом весьма отчетливо.»
Электрохимический телеграфный аппарат Бена (1835)
В целом аппарат Бена членам Комитета понравился, но был отмечен недостаток: на образование прорезей в бумаге для передачи депеши требовалось довольно много времени. Предлагалось приобрести электрохимический телеграф в одном полном экземпляре для сравнения его с другими испытываемыми телеграфами. С этим предложением согласился Клейнмихель и Министерство финансов приобрело один телеграфный аппарат Бена за 2300 руб. В последствии Клейнмихель отказался от его применения и Комитет вынес заключение, что он не подходит под систему российского телеграфа, но может быть полезен для науки и помещен в музей Института корпуса путей сообщения, что и было сделано в 1851 г. Принцип электрохимической обработки принятых телеграмм впоследствии широко использовался в фототелеграфных аппаратах, т.е. для науки принципы аппараты Бена, несомненно, были полезны.
В мае 1845 г. представитель департамента сообщил Клейнмехелю об Электрическом телеграфе, который применялся в Германии, и его устройство было поручено знаменитому Мюнхенскому физику Сейнгейму. В другом сообщении в августе 1844 г. говорилось об англичанине Г.Фердели, который «..весьма много занимается придумыванием сигналировки посредством электричества…и изготовил весьма удовлетворительный электромагнитный печатающий телеграф. Не подлежит сомнению, что эта телеграфическая система совершеннее всех до сих пор по сему предмету известных систем; большемерное же ее применение понизилось в половину цены, вследствие вновь придуманного способа, по коему ведущие проволоки проводятся, не так, как до селе под землею в каучуковых челах и в чугунных трубах с гарцевою смазкою, но по воздуху – на высоких подпорах, при чем все точки прикосновения уединяются стеклянными или полированными глиняными изделиями. Г Фердели уверял меня, что его телеграф мог бы легко устроить в С.-Петербурге академик Б. Якоби.»
Академик Борис Семенович Якоби
Из всех исследований применения телеграфа за рубежом представители Российской империи пришли к выводу, что «компания Царскосельской железной дороги, например, для собственной пользы, могла бы устроить электромагнитную линию между С.-Петербургом и Царским Селом».
Первая телеграфная магистраль России.
Движение по С.-Петербурго-Московской железной дороге открывалось отдельными участками в разное время, начиная с мая 1847 г. К открытию движения на С.-Петербурго-Московской железной дороге было издано «Положение о составе Управления С-Петербурго-Московской железной дороги», согласно которому Управление дороги имело четыре состава (по современной терминологии - «службы»): дорожный, станционный, подвижной, телеграфический. При этом «Состав телеграфический» с момента организации Управления дороги был самостоятельной службой, и в него входило два Управления телеграфа, которые располагались в обеих столицах (С.-Петербурге и Москве). Штат этих управлений состоял из двух дежурных офицеров, двух писарей и двоих курьеров. На остальных станциях располагались «телеграфические отделения» (от 1-го до 35-го) во главе с унтер-офицером и все нижние чины составляли «телеграфическую роту».
Аппараты Морзе располагались на столичных станциях, на остальных - аппараты Сименса. С учетом телеграфной связи с Зимним дворцом на столичных станциях было три аппарата Морзе, к которым были назначены по 4 старших «сигналиста». Аппаратов Сименса было установлено 76, к каждому из них были назначены по 1 старшему и 2 младших «сигналиста». При каждом «телеграфическом отделении» состоял также один «кантонист», которого подготавливали в сигналисты. Аппараты Морзе столичных станций, как и аппараты Сименса, расположенные на всех станциях первого класса, были соединены «толстым» проводником. Станции второго, третьего и четвертого классов соединялись «тонкими телеграфическими проводами». Обратим внимание, что уже на первой железнодорожной магистрали С.-Петербург - Москва станции были поделены на классы. Для работы аппаратов предусматривалось по две батареи питания: «одна для действия, а другая для смены на следующий день». На российских телеграфах вначале (до 1865 г.) для батарей использовались элементы Даниэля, а затем их заменили элементами Мейдингера.
Первоначально линия была построена с использованием подземных проводников, которые действовали два года и были заменены воздушными. Аппараты Сименса также с 1 852 г. начали постепенно заменяться аппаратами Морзе. Замена была связана с тем, что аппараты Сименса обеспечивали скорость передачи не более 25 слов в час и требовали 100 и более элементов питания, контроль депеш был затруднителен, так как при приеме по диску с буквами их приходилось диктовать, и это было главной причиной замедления приема депеш. Аппарат Морзе обеспечивал скорость передачи в 100 раз больше, и принятая депеша оставалась на телеграфной ленте. Аппараты еще около 100 лет использовались на железнодорожном транспорте. В России все телеграфы того времени находились в ведении Главного управления путей сообщения, они передавали телеграммы, связанные с работой, как железнодорожного транспорта, так и частных лиц. В общем пользовании железнодорожный телеграф находился до 1864 г, когда телеграф был передан почтовому ведомству. Отсюда возникла «кабала» почтового ведомства над железнодорожными телеграфами, бороться с которой пришлось до организации телеграфной связи общего пользования.
Начало строительства. Академику Якоби было поручено составление проекта телеграфа между С.-Петербургом и Москвой по образцу устроенного им в 1843 г. электрического телеграфного сообщения между зданиями Главного управления путей сообщения в С.-Петербурге и дворцом Царского Села, а также между Зимним Дворцом в С.-Петербурге и кабинетом Главноуправляющего путей сообщения. В качестве «совещательного инженера» из Америки был приглашен один из известных специалистов железнодорожного дела инженер-майор Уистлер. В его задачи входили также вопросы по организации на железной дороге сигнализации.
Высочайшим повелением в 1845 г. было «признано нужным сделать опытное электромагнитное сообщение от Знаменского моста, по направлению железной дороги, на протяжении одной версты, в 1846 году - опытную линию от С.-Петербурга до Александровского завода, производящего мастику (изолирующую массу). Выполнение обеих линий также было поручено академику коллежскому советнику Якоби».
Перед Якоби встала крайне трудная проблема, требующая решения ряда сложных задач: усовершенствовать свой телеграфный аппарат; улучшить производство подземных проводов, изолированных и уложенных в стеклянные трубочки с резиновыми соединениями; создать изолирующую массу для стыков трубочек; разработать необходимые измерительные приборы и др. Строительство начали с подземной прокладки металлических проводников в берме полотна железной дороги. Предложение Якоби использовать воздушные провода, широко применяемые уже за границей, не нашло поддержки. Более того, Главное управление путей сообщения настояло на «более верном средстве» и остановилось на подземной проводке. Якоби все же предпринимал усилия для выполнения порученного ему дела. Для лучшей изоляции 600-верстной линии применил два медных провода, уложенных в деревянные желоба и залитые асфальтом. Открытие гуттаперчи дало возможность использовать и ее в качестве изолирующего вещества. Однако кустарный способ «изолировки» не дал удовлетворительных результатов. В конечном итоге неудачи разочаровали Якоби, и в 1848 г. он попросил освободить его от работ по устройству телеграфа. В дальнейшем развитие телеграфа в России было тесно связано с именами Карла Карловича Людерса (Лидере) и Вернера фон-Сименса, приехавших в Россию из Пруссии для «приложения» своего изобретения - телеграфного аппарата.
В 1850 гг. Людерсом было сделано предложение о распределении «телеграфических станций» на линии С.-Петербург - Москва.
Карл Карлович Людерс
В нем были намечены основы устройства, эксплуатации и обслуживания телеграфа на первой скоростной железнодорожной магистрали в России С. -Петербург – Москва: «…оказывается необходимым устроить столько же телеграфических станций, сколько является таковых на железной дороге, а именно 33. Для каждой из них кроме оконечных в С.-Петербурге и Москве, потребно по два аппарата, полагая при одном аппарате 3 сигналиста, что составляет по 8-ми часов дежурств в сутки на каждого, потребуется для полного телеграфического действия 192 сигналиста…. Телеграфические аппараты должны быть помещены на самих станциях, ибо без этого невозможно было бы останавливающимся только на несколько минут поездам сообщать полученные депеши и принимать таковые же от них. Для установки аппаратов на станциях I и II классов может быть занята одна из комнат, находящихся возле кассы, которая входит в состав квартиры кассира. На станциях III класса аппараты могут быть помещены в одной из пристроек водогрейной, которая не имеет определенного назначения; в другой же пристройке помещаться будет тендер запасного локомотива. Наконец, в станциях IV класса аппараты могут быть помещены в пассажирских домах, где такие есть, а где их нет, самый аппарат может быть помещен в нижнем отделении водогрейного дома, под топками, как теперь сделано в Колпине. Для помещения телеграфической команды и для сохранения и заряжения гальванических батарей не имеется места на самих станциях, но как при них должны быть устроены еще особые дома и службы, то при составлении проектов на эти постройки следует иметь в виду помещения для прислуги, при телеграфе потребной».
Дворцовая телеграфная станция в Петергофе.